规格说明书

SGL8022W

单通道直流 LED 灯光控制触摸芯片

版本 1.4

保留不预先通知而修改此文件的权利。

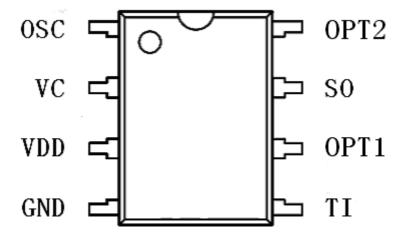
欢迎为本产品提供意见及建议,如果您在使用产品的过程中,遇到疑难问题,可以通过以

咨询电话: 0755-33156743

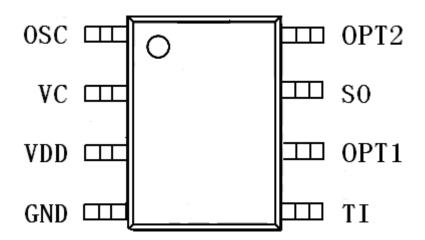
1. 概述

SGL8022W 是一款用于 LED 灯光亮度调节及开关控制的单通道触摸芯片。使用该芯片可以实现 LED 灯光的触摸开关控制和亮度调节。具有如下功能特点和优势:

- ▶ 灯光亮度可根据需要随意调节,选择范围宽,操作简单方便。
- ▶ 可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。
- ▶ 应用电压范围宽,可在 2.4~5.5V 之间任意选择。
- ▶ 应用电路简单,外围器件少,加工方便,成本低。
- ▶ 抗电源干扰及手机干扰特性好。EFT 可以达到±2KV 以上;近距离、多角度手机干扰情况下, 触摸响应灵敏度及可靠性不受影响。

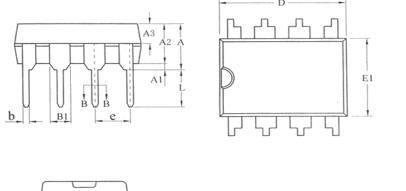

2. 特性

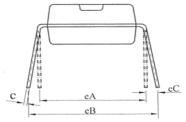
- ◆ TI 触摸输入对应 SO 灯光控制输出。共有四种功能可选,由 OPT1 和 OPT2 管脚上电前的输入 状态来决定。具体如下:
 - 1) OPT1=1, OPT2=1 对应:不带亮度记忆突明突暗的 LED 触摸无级调光功能
 - 2) OPT1=0, OPT2=1 对应:不带亮度记忆渐明渐暗的 LED 触摸无级调光功能
 - 3) OPT1=1, OPT2=0 对应: 带亮度记忆渐明渐暗的 LED 触摸无级调光功能
 - 4) OPT1=0, OPT2=0 对应: LED 三段触摸调光功能
- ◆ 不带亮度记忆突明突暗的 LED 触摸无级调光功能如下:
 - ▶ 初始上电时,灯为关灭状态。
 - ➤ 点击触摸(触摸持续时间小于 550ms)时,可实现灯光的亮灭控制。一次点击触摸,灯亮;再一次点击触摸,灯灭。如此循环。灯光点亮或关灭时,无亮度缓冲。且灯光点亮的初始亮度固定为全亮度的 50%。
 - ➤ 长按触摸(触摸持续时间大于 550ms)时,可实现灯光无级亮度调节。一次长按触摸,灯光亮度逐渐增加,松开时灯光亮度停在松开时刻对应的亮度,若长按时间超过 3 秒钟,则灯光亮度达到最大亮度后不再变化;再一次长按触摸,灯光亮度逐渐降低,松开时灯光亮度停在松开时刻对应的亮度,若长按时间超过 3 秒钟,则灯光亮度达到最小亮度后不再变化。如此循环。


- ▶ 点击触摸和长按触摸可以在任何时候随意使用,相互之间功能不受干扰和限制。
- ◆ 不帶亮度记忆渐明渐暗的 LED 触摸无级调光功能是在不带亮度记忆突明突暗的 LED 触摸无级调光功能的基础上,在点击触摸开灯和关灯时,通过使灯光由一个较低亮度缓慢平滑过渡到开灯初始亮度,在点击触摸关灯时,使灯光由当前亮度缓慢平滑降低直至关灭,从而达到亮度缓慢变化的视觉缓冲效果,起到保护眼睛和视力的效果。
- ◆ 带亮度记忆渐明渐暗的 LED 触摸无级调光功能是在不带亮度记忆渐明渐暗的 LED 触摸无级调光功能的基础上增加了亮度记忆功能。即在 AC220V 电源不断电的情况下,每次点击触摸关灯时的亮度会被记忆,下次点击触摸开灯时会以此亮度作为初始亮度。在 AC220V 电源掉电的情况下,重新上电后的第一次点击触摸开灯,初始亮度固定为全亮度的 50%。
- ◆ LED 三段触摸调光功能
 - ▶ 初始上电时,灯为关灭状态。
 - ▶ 每次点击触摸,灯光亮度按低亮度->中两度->高亮度->灭依次循环变化。

3. 封装及引脚说明

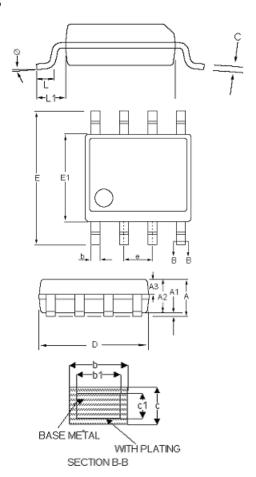
DIP8


SOP8


管脚序号	管脚名称	输入/输出	功能描述
1	osc	输入	振荡电阻接入脚
2	VC	输入	采样电容接入脚
3	VDD	电源	电源正
4	GND	电源	电源负
5	TI	输入	触摸输入脚
6	OPT1	输入	选项输入脚 1
7	SO	输出	灯光控制输出
8	OPT2	输出	选项输入脚 2

4. 封装尺寸图

DIP8



SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	3.60	3.80	4.00	
A1	0.51	_		
A2	3.10	3.30	3.50	
A3	1.50	1.60	1.70	
ь	0.44		0.53	
bl	0.43	0.46 0.48		
B1	1.52BSC			
С	0.25	.25 0.31		
cl	0.24	0.25	0.26	
D	9.05	9.25	9.45	
E1	6.15	6.35	6.55	
е	2.54BSC			
eA	7.62BSC			
eВ	7.62	_	9.50	
eC	0		0.94	
L	3.00			

SOP8

SYMBOL4	MILLIMETER₽			
3 TIMIBOL#	MIN₽	NOM₽	MAX₽	
A₽	-		1.77₽	
A1₽	0.08 ₽	0.18 🕫	0.28 ₽	
A2₽	1.20 ₽	1.40 🕫	1.60 ₽	
АЗ₽	0.55 ₽	0.65 ₽	0.75 ₽	
b₽	0.39 ₽	- ₽	0.48 ₽	
b1₽	0.38 ₽	0.41 🕫	0.43 ₽	
C↔	0.21 ₽	- ₽	0.26 ₽	
c1₽	0.19 ₽	0.20 🕫	0.21 ₽	
D₽	4.70 ₽	4.90 ₽	5.10 ₽	
E₽	5.80 ₽	6.00 ₽	6.20 ₽	
E1₽	3.70 ₽	3.90 ₽	4.10 ₽	
e₽	1.27BSC₽			
L₽	0.50 ₽	0.65 ₽	0.80 ₽	
L1₽	1.05BSC₽			
θ₽	0÷ —÷		8°₽	

5. 应用电路图

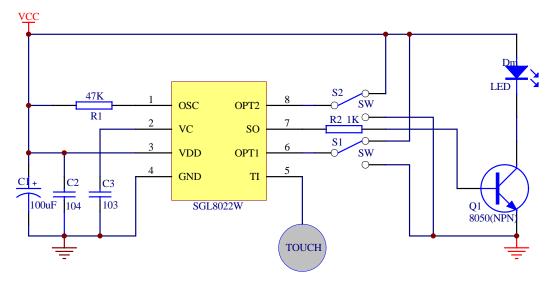


图 1、使用干电池或稳压源直接供电时的应用电路(VCC 为干电池或稳压电源直流电压输出)

图 2、使用充电电池供电时的应用电路(AC220IN 为交流 220V 充电电压输入)

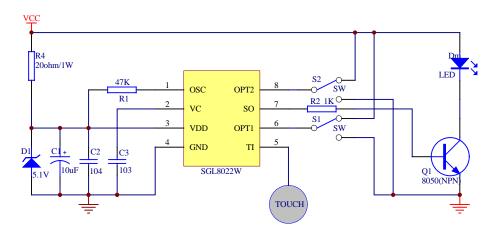


图 3、使用开关电源供电时的应用电路(VCC 为开关电源直流电压输出)

注: 当介质材料及厚度等差异较大时,可通过调整 VC 与 GND 之间的 C3 采样电容来调节触摸灵敏度。 电容容值越大,灵敏度越高;电容容值越小,灵敏度越低。

介质类型	VC 与 GND 之间 C3 采样电容		
开灰人主	器件类型	器件参数	
直接触摸金属外壳	333 涤纶电容	0.033uF/25V	
3mm 以内亚克力玻璃	103 涤纶电容	0.01uF/25V	
3-6mm 亚克力玻璃	203 涤纶电容	0.02uF/25V	
6-10mm 亚克力玻璃	473 涤纶电容	0.047uF/25V	

6. 电气参数

参数	典型值	単位
工作电压	5.1V	V
工作电流	700	uA
待机电流	20	uA
输入高电平	(2/3)VDD	V
输入低电平	(1/3)VDD	V
输出高电平电流	7	mA
输出低电平电流	12	mA
工作温度	-20~70	°C
存储温度	-50~100	°C

7. BOM 表

器件标示	器件名称	器件参数	
R1	碳膜电阻	47KΩ/0.25W	
R2	碳膜电阻	1KΩ/0.25W	
R4	碳膜电阻	20Ω/1W	
C1	电解电容	10uF/25V	
C2	瓷片电容	0.1uF/25V	
C3	瓷片电容	0.01uF/25V	
Q1	NPN 三极管	8050	
D1	稳压二极管	5.1V/1W	
D2	开关二极管	IN4148	
Dm	发光二极管	LED	

8. 修改记录

版本	更新日期	更新内容	修改人	确认人
V1.0	2009-3-11	原始版本	Apple	branden
V1.1	2009-4-9	修改应用电路图示说明	Apple	branden
V1.2	2009-8-25	修改管脚定义、应用电路图和 BOM 表	Apple	branden
V1.3	2009-9-17	修改特性描述、管脚定义、应用电路图和电气参数	Apple	branden
V1.4	2010-8-13	修改特性描述、应用电路图和电气参数	Apple	branden

欢迎为本产品提供意见及建议,如果您在使用产品的过程中,遇到疑难问题,可以通过以以下方式联系我们:

咨询电话: 0755-33156743